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Quantum-classical interactions



What is a hybrid (mixed classical-quantum) system?

Classical Quantum
mechanics

Hybrid system(s)
Which one do you prefer? The Opinicus or the Gryphon?
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Finding a physically consistent approach is highly
nontriviall

@ Classical mechanics and quantum mechanics are
formulated using very different mathematical structures.
— we need to find a "common ground."

@ Conceptual issues, i.e., uncertainty principle,
superposition, etc.
— what parts of classical, quantum mechanics do we
preserve when we describe a mixed system? And How?

@ = Many, many “variations on a theme.”
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Ensembles on configuration space



Ensembles on configuration space:
a Hamiltonian approach

Basic idea: Describe ensembles of physical systems by:
@ a probability density P(x) on configuration space,
@ a canonically conjugate quantity S(x),
@ an ensemble Hamiltonian H[P, S].

The state of a system is described by P(x) and S(x).

The equations of motion for P and S are

oP oH 9S oH
SroiPM=Se = {SHy =35

No physics yet! Just dynamics of probabilities.
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Example: non-relativistic particles in CM

@ Ensemble Hamiltonian for two classical particles:

_ ViSP | |V2SP?
Hcc[P,S]—/dX1 dX2P|: oM, + 2Ms + V.
@ Equations of motion:
oS |V1S2  |V2S)? _
5 T oM, + oM, + V(x1,%x2) =0,
oP V1S VoS
or TV <PM1>+V2 ( Mz) 0

@ The equations are:
- Hamilton-Jacobi equation
- Continuity equation
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Example: non-relativistic particles in QM
@ Ensemble Hamiltonian for two quantum particles:

_ n [ViPP | [V2PP
Hmmﬁy4udaﬂ+4/ﬁmd%P<mhm+2%PQ.

@ Equations of motion:

2 2 2 2
0S | |ViSP |, |V25| v2\/P vf) 0.

- + V(as, +— +

ot om; 2mp (a1,92) ( VP mav/P
L A N (o

ot my

mo

@ The canonical transformation ) := /P €'S/" leads to

o _ # h
ih— V V(qy,
@ See Kibble’s “Geometrization of Quantum Mechanics”
T. W. B. Kibble, Commun. math. Phys. 65, 189-201 (1979)
M. Reginatto and M. J. W. Hall, AIP Conf. Proc 1443, 96-103 (2011)
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Classical and quantum observables

Observables are functionals A[P, S].
— Dual role: as observables and generators of canonical.
— Closed Lie algebra under the Poisson bracket.

Let f(x, p) be a classical phase Let M be a quantum operator (i.e., a
space function. Hermitian operator in Hilbert space).
Define Define
Ci[P, S := () QulP. 8] := (w|M|v)

= [dx Pf(x,VS). — [ dqdq’' VPP'e(S=8)/M(q'|M|q).
The Poisson bracket for the The Poisson bracket for the
classical observables quantum observables
is isomorphic to the is isomorphic to the
phase space Poisson bracket, commutator on Hilbert space,
{Cr. Cg} = Cyr.gy { Qi Qu} = Clin g in
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Example: hybrid quantum-classical system

@ Ensemble Hamiltonian for an interacting classical /
quantum system :

HQC[Pv S] = HQ[Pv S]+HC[P7 S]+Hint[P, S]
_ [VgSPP | 1 [VqPI? | [VxSP
- /dqup(zm team T oam TV

@ Equations of motion:

88 VS[2 12 VavVP  |V,S)? _
E + 2m +% \/,3 + oM + V(q,X)—O,
oP VqS VS B

5t Ve (Pm>+vx. (P 9 >_0.

@ Quantum and classical probability densities:
Po(0) = [daP@x),  Poa) = [ dxP(a.x)
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Reduced density operator, phase space density

@ Conditional wavefunction, density operator:

sax) = P@X) S0 P(glx) = P(q,%)/P(X)
bac = / OXPX) ) ], i) = / dq (qlx) x)

@ Conditional classical phase density:

poio = [ daPo(a) P(xia) 3(p-V:S) = [ daP(@.x)d(p-V.S)

@ A full description for a hybrid ensemble requires both
P(q,x) and 5(q, x)

» it cannot be equivalently described by pg|c and pcq-
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An extension of the theory: Hybrid systems with
quantum matter fields and a classical gravitational field

@ How do you get there?
» Extend the theory from particles to fields.
» Hamilton-Jacobi formulation of GR for classical sector.
» Functional Schrédinger equation for quantum sector.

@ Some calculations...

» Classical CGHS black hole + quantum scalar field
(QFT on CST, Hawking radiation).
» Special solutions for simple cosmological model.

» Entanglement of quantum fields via classical
gravity.

Michael J. W. Hall and Marcel Reginatto, Ensembles on Configurations Space:
Classical, Quantum, and Beyond (Springer)

Marcel Reginatto and Michael J. W. Hall, Entangling quantum fields via a classical
gravitational interaction, J. Phys.: Conf. Ser. 1275 012039 (2019)
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Hybrid quantum-classical equations
from Galilean invariance



Ensembles on configuration space:
Representation of the Galilean group

@ The Galilean group has 10 generators:
T : space translations,
H : time translations,
L : space rotations,
G : Galilean transformations (“boosts”).

@ Look for a representation of the Galilean group in terms
of observables,

{H.T} = 0 {HL}=0.  {HG}=-T,
{Li T} = ewTe {Li L} = €L, {Li, G} = €k G,
{T.T} = 0. (TG} =M {G.G} =0,

where M is the central charge.

Marcel Reginatto et al Quantum-classical interface June 21, 2023 15/33



Space translations, rotations, and Galilean boosts

@ The generators of translations and rotations are the

observables
TIPS = / dqdx P (VS + VxS),
L[P,S] = /dqu P (qx VgS+XxxV,S).

@ The generators of Galilean boost are
G[P, S] = /dq dx P (MoQ — tV4S + moX — tV4S) |

where t is the time.
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Time translations and Galilean invariance

@ The generator of time translations H is the hybrid
ensemble Hamiltonian (energy observable),

H[P, S] = Hoc[P S] —HQ[P S] +H0[P S] —|—7‘[mt[P7 S]

/dq dx P { (|vq3|2 4P2|qu2>

[ 2 —
+ g TSP+ Viia - x))

@ The term that leads to the quantum potential in the
equations of motion follows if you require
» Galilean invariance
» No changes to the continuity equation

» Additivity of the ensemble Hamiltonian for independent,
non-interacting subsystems

» Equations of at most second order in the derivatives of P

@ => Non-classical particles are quantum particles!
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Ensembles on phase space



Ensembles on phase space:
A Hamiltonian approach

Basic idea: Describe ensembles of physical systems by:
@ a probability density o(x, p) on phase space,
@ a canonically conjugate quantity o(x, p): the action,
@ an ensemble Hamiltonian H|p, o].

The equations of motion for o and o are

do oM 9o L
E_{QarH}—Ea at—{o—a}l}_ (5Q.

We now look for an ensemble Hamiltonian that leads to
appropriate evolution equations for o and o.
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Example: non-relativistic particle in CM (I)

Classical particle with Hamiltonian and Lagrangian

_ P _ e
H= o + V(x), L= om V(x).

@ Require that p satisfy the Liouville equation,

do P
E%—VXQ'E—VpQ'vXVZO'

@ |dentify o with the action in phase space, so that
do  Oo

E:E+{U7H}:L,
which implies
do p N
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Example: non-relativistic particle in CM (II)

The pair of equations

do P
fat+ng-—m—VpQ-VXV =0

9o p I
E‘FVXJ'E—VIJO"VXV = 2m—V

are equivalent to the Koopman-van Hove equations for a
classical wavefunction ¥ (x,p) = /o e'/".(*)

The corresponding ensemble Hamiltonian is given by

[
?{(} = J/P Ci)(C1F> % { (:‘7X(T . ;;3 — 22’77:) + V- ‘7,;(7 . ‘7X’h/ .

* See e.g. Gay-Balmaz, F., Tronci, C., Madelung transform and probability densities
in hybrid quantum-classical dynamics. Nonlinearity, 33 (2019), n. 10, 5383-5424
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The connection between classical ensembles in
configuration space and phase space

@ The density ¢ is mapped to a mixture in configuration
space,

p(X,p) = / doe w()P(X|@) 5(p — VxS(X; ).

@ The equations of motion are mapped correctly.

» To show this you need to use properties of the actions
S(x) in configuration space and o(x, p) in phase space.

@ The two ensemble theories are different

» Definitions of observables and of generators of
transformations are not the same in both theories.
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Ensembles on phase space:
Hybrid equations from Galilean invariance

@ The Galilean group has 10 generators:
T : space translations,
H : time translations,
L : space rotations,
G : Galilean transformations (“boosts”).

@ Look for a representation of the Galilean group in terms
of observables,

{H7 TI} = Oa {H,L,‘}:O, {Ha Gi}:_7-i7

{Li,T;} = €Tk, {Li,L} =e€jxls, {Li, G} = €k Gx,

{Tia Tj} = 07 {TIaG]}: 7M6/j> {Gia GJ}IO,
where M is the central charge.
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Space translations, rotations, and Galilean boosts

@ Generators of translations and rotations,
Tlo,0] = / dqadxdp ¢ (Vqo + Vxo),

Llo,0] = /dqudpg (q x Vqgo +Xx Vxo+p x Vpo).

@ Generators of Galilean boosts,
Glo, 0] = /dq axdp o (meq — tVgo + mg (X — Vpo) — tVxo),

where t is the time.
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Time translations and Galilean invariance
@ The generator of time translations H is

Hlo,0] = Haclo, o] = Holo, o] + Helo, o] + Hintlo, o]

1 2
/dqudP@ { 5o (IVq 2+ szq9|2)

1
+ 2me (2Vgo-p—p?) + V(la —x|)

V0 - Yy V(la - X))

@ The last term in H is required to ensure Galilean
invariance and conservation of momentum

@ The term that leads to the quantum potential in the
equations of motion follows from the same consistency
requirements as in the case of ensembles on
configuration space

» Non-classical particles are quantum particles!

Marcel Reginatto et al Quantum-classical interface June 21, 2023 25/33



Example: hybrid quantum-classical system

@ The equations that follow from the hybrid ensemble
Hamiltonian are

do | Vg (oVqo) Y _

E + T + VXQ Hc VpQ VXV = 0,
do  |Vgqoff h2 V3,0 p p2
— — L VyV = — - V.
ot = 2mq  2mq /o TV = Ve Vi 2m

@ These equations are equivalent to a complex linear
equation for a hybrid wavefunction based on a partial
quantization of the Koopman-van Hove equation,

$(x,p) = e/l

* See e.g. Gay-Balmaz, F., Tronci, C., Madelung transform and probability densities
in hybrid quantum-classical dynamics. Nonlinearity, 33 (2019), n. 10, 5383-5424
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Relations between classical models



Relations between classical models

@ The classical configuration- and phase-space ensemble
approaches are “essentially” equivalent

@ Introduce the classical phase space wavefunction
(a,p) = vee'/".

Then the equations for the phase space ensemble can
be written as a complex linear equation,

o). p
the Koopman-van Hove equation.

@ Thus one can now introduce a third, Hilbert space
model based on the Koopman-van Hove equation.

@ The three models are “essentially” equivalent
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Relations between hybrid models



Relations between hybrid models (I)

@ The configuration- and phase-space ensemble
approaches are inequivalent for hybrid systems

> qudxdw(%)#qudx (&)
where P(q,X) = [ dp o(a, X, p).

@ The terms in blue that lead to the quantum potential in
the equations of motion are numerically different for the
two models.

@ The “quantum potential term” behaves differently in
each of the two models:

» For ensembles on configuration space, it depends on
P(q,x); i.e., on the particles’ locations only;

» For ensembles on phase space, it depends on o(q, X, p);
i.e., also on the momentum of the classical particles.
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Relations between hybrid models (ll)

@ Introduce the hybrid wavefunction

¥(a.p) = ee"

Then the equations for the phase space ensemble are
equivalent to a complex linear equation,

i |

2 . p p?
hs mng+1h<VXV~meC~VX) +v}¢

2me
which is a hybrid extension of the Koopman-van Hove
classical model.

@ Thus one can again introduce a third model, a Hilbert
space model which has the same equations as the ones
of the hybrid phase space approach — but which is not
equivalent to the hybrid theory based on ensembles on
configuration space.
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Summary



Summary

@ We looked at three models that describe classical and
hybrid systems.

@ For classical systems of particles, the fundamental
variables and the equations of motion can be shown to
be the same.

@ The extension to hybrid systems leads to different
models.
» The model based on ensembles on configuration space
differs from the other two models.
» The models based on ensembles on phase space and
the Hilbert space model appear to be to a large extent
equivalent.

@ “Work in progress.”
» States, observables, generators, measurements, ...
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